Abstract

To facilitate future novel devices incorporating rare earth metal films and III-V semiconductors on Si substrates, this study investigates the mechanisms of growth via molecular beam epitaxy of gadolinium (Gd) on aluminum nitride (AlN) by determining the impact of substrate temperature on microstructure. The Gd films underwent extensive surface analysis via in situ reflective high energy electron diffraction (RHEED) and ex-situ SEM and AFM. Characterization of the surface features of rare earth metal films is important, as surface geometry has been shown to strongly impact magnetic properties. SEM and AFM imaging determined that Gd films grown on AlN (0001) from 80 °C to 400 °C transition from wetting, nodular films to island–trench growth mode to reduce in-plane lattice strain. XRD and Raman spectroscopy of the films revealed that they were primarily comprised of GdN, Gd and Gd2O3. The samples were also analyzed by a vibrating sample magnetometer (VSM) at room temperature. From the room temperature magnetic studies, the thick films showed superparamagnetic behavior, with samples grown between 240 °C and 270 °C showing high magnetic susceptibility. Increasing GdN (111) 2θ peak position and single-crystal growth modes correlated with increasing peak magnetization of the thin films, suggesting that lattice strain in single-crystal films was the primary driver of enhanced magnetic susceptibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call