Abstract

We investigate the effects of strong magnetic fields upon the large-scale properties of neutron and protoneutron stars. In our calculations, the neutron star matter was approximated by pure neutron matter. Using the lowest order constrained variational approach at zero and finite temperatures, and employing AV18 potential, we present the effects of strong magnetic fields on the gravitational mass, radius, and gravitational redshift of neutron and protoneutron stars. It is found that the equation of state for a neutron star becomes stiffer with an increase of magnetic field and temperature. This leads to larger values of the maximum mass and radius for the neutron stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.