Abstract

IntroductionTreatment of chondral injuries remains a major issue despite the many advances made in cartilage repair techniques. Although it has been postulated that the use of marrow stimulation in combination with cell-based therapy may provide superior outcome, this has yet to be demonstrated. A pilot study was thus conducted to determine if bone marrow derived mesenchymal stromal cells (BM-MSCs) have modulatory effects on the repair outcomes of bone marrow stimulation (BMS) techniques.MethodsTwo full-thickness chondral 5 mm diameter defects were created in tandem on the medial condyle of left stifle joints of 18 Boer caprine (N = 18). Goats were then divided equally into three groups. Simultaneously, bone marrow aspirates were taken from the iliac crests from the goats in Group 1 and were sent for BM-MSC isolation and expansion in vitro. Six weeks later, BMS surgery, which involves subchondral drilling at the defect sites, was performed. After two weeks, the knees in Group 1 were given autologous intra-articular BM-MSCs (N = 6). In Group 2, although BMS was performed there were no supplementations provided. In Group 3, no intervention was administered. The caprines were sacrificed after six months. Repairs were evaluated using macroscopic assessment through the International Cartilage Repair Society (ICRS) scoring, histologic grading by O’Driscoll score, biochemical assays for glycosaminoglycans (GAGs) and gene expressions for aggrecan, collagen II and Sox9.ResultsHistological and immunohistochemical analyses demonstrated hyaline-like cartilage regeneration in the transplanted sites particularly in Group 1. In contrast, tissues in Groups 2 and 3 demonstrated mainly fibrocartilage. The highest ICRS and O’Driscoll scorings was also observed in Group 1, while the lowest score was seen in Group 3. Similarly, the total GAG/total protein as well as chondrogenic gene levels were expressed in the same order, that is highest in Group 1 while the lowest in Group three. Significant differences between these 3 groups were observed (P <0.05).ConclusionsThis study suggests that supplementing intra-articular injections of BM-MSCs following BMS knee surgery provides superior cartilage repair outcomes.

Highlights

  • Treatment of chondral injuries remains a major issue despite the many advances made in cartilage repair techniques

  • This study suggests that supplementing intra-articular injections of bone marrow derived mesenchymal stromal cells (BM-mesenchymal stromal cells (MSCs)) following bone marrow stimulation (BMS) knee surgery provides superior cartilage repair outcomes

  • It is likely that only fibroblastic-appearing MSCs were left at the end of cell cultures (Figure 2)

Read more

Summary

Introduction

Treatment of chondral injuries remains a major issue despite the many advances made in cartilage repair techniques. Chondral injuries often afflict the young owing to their athletic lifestyle and the high impact mechanical loading subjected to their joints during routine activities [1]. Injuries, especially those which result in focal cartilage defects, lead to an immediate loss in articular surface smoothness, resulting in the increase in tissue attrition. It has been reported that the full-thickness chondral defect can heal spontaneously, the resultant repair tissue forms fibrous cartilage which will eventually lead to tissue degeneration [3] This poses serious issues, as many of these patients would present with irreversible cartilage damage by the time they seek help from health care providers. The urgency to resolve this problem becomes more apparent when such conditions involve the young with many years of productivity still expected of them [4,5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.