Abstract

In the study of conductive conjugated polymers, electrical doping has long played an important role. A new polymeric gas sensor has been successfully fabricated by means of an ink-jet printer using a conductive aqueous formulation of poly(3,4-ethylenedioxythiophene) poly(styrene-sulfonate) (PEDOT:PSS). A simple yet robust treatment method for the irreversible secondary doping was performed (by H2SO4 and MeOH post-treatments) to enhance conductivity and improve gas sensing performance. Real time gas sensing measurements were carried out by exposing the devices with eight different analytes in a low concentrations range of VOCs vapors up to 5 % of the saturated vapor pressure, 10 ppm of NO2 and up to 10 % of relative humidity (RH) at 21 °C, exploiting dry air as carrier and diluting gas. The gas response, obtained as the ratio between the steady-state resistance variation and the baseline resistance of the device, was evaluated for different PEDOT:PSS post-treated sensors. An unexpected behavior of PEDOT:PSS post-treated with concentrated H2SO4 was observed, while MeOH and diluted H2SO4 post-treated sensors exhibited improved response towards all investigated analytes. The best performances were obtained towards 5 % of ammonia and NO2 with a gas response of 6 % and 28 % respectively with the device post-treated with pure methanol and 16 % with the sensor post-treated with diluted sulfuric acid. Furthermore, long-term stability and the influence of temperature were evaluated on the fabricated sensors. Altogether, these promising results allow a better understanding of the secondary doping effects on the electrical and sensing properties, paving the way for electronic nose development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call