Abstract
Before parturition the uterine cervix undergoes a ripening process (“softens” and dilates) to allow passage of the fetus at term. The exact mechanism(s) responsible for cervical ripening are unknown, though a role for peptidergic sensory neurons is emerging. Previous work demonstrated that administration of substance P (SP) to ovariectomized rats caused events associated with cervical ripening, that production of SP in cervix-related dorsal root ganglion (DRG) is estrogen responsive, and that release of SP from neurons terminating in the cervix and spinal cord peaks prior to parturition. The present study was designed to test the hypothesis that calcitonin gene-related peptide (CGRP), a neuropeptide co-stored with SP in many sensory neurons, undergoes changes with pregnancy and hormonal environment. Immunohistochemistry, in situ hybridization, reverse transcriptase–polymerase chain reaction (RT–PCR) and radioimmunoassay (RIA) were used to investigate CGRP in L6-S1 DRG, spinal cord and cervix during pregnancy and the role of estrogen in CGRP synthesis. CGRP-immunoreactive primary sensory neurons expressed estrogen receptors (ER-α and ER-β). In the cervix, CGRP concentrations decreased, but in the L6-S1 DRG and the spinal cord segments, CGRP levels increased, with peak effects observed at day 20 of gestation. CGRP mRNA synthesis increased in DRG over pregnancy. Sensory neurons of ovariectomized rats treated with estrogen showed increased CGRP mRNA synthesis in a dose-related manner, an effect blocked by the ER antagonist ICI 182 780. From these results, we postulate that synthesis of CGRP in L6-S1 DRG and utilization in the cervix increase over pregnancy and this synthesis is the under influence of the estrogen–ER system. Collectively, these data are consistent with the hypothesis that CGRP plays a role in cervical ripening and, consequently in the birth process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.