Abstract

Prior to parturition the non-pliable uterine cervix undergoes a ripening process (“softens” and dilates) to allow a timely passage of the fetus at term. The exact mechanism(s) triggering and involved in cervical ripening are unknown, though evidence for a role for sensory neurons and their contained neuropeptides is emerging. Moreover, an apparent increase in neuropeptide immunoreactive nerves occurs in the cervix during pregnancy, maternal serum estrogen levels rise at term and uterine cervix-related L6-S1 dorsal root ganglia (DRG) sensory neurons express estrogen receptor (ER) and neuropeptides. Thus, we sought to test the hypothesis that the neuropeptide substance P (SP) changes biosynthesis and release over pregnancy, that estrogen, acting via the ER pathway, increases synthesis of SP in DRG, and that SP is utilized in cervical ripening at late pregnancy. Using immunohistochemistry, in situ hybridization, reverse transcriptase–polymerase chain reaction (RT–PCR) and radioimmunoassay (RIA), we investigated coexpression of ER-α/β and SP; differential expression of ER-α and -β mRNA in DRG neurons; SP synthesis in DRG; and changes in SP concentration in the cervix, DRG and spinal cord over pregnancy. In addition, the effect of exogenous estrogen on SP synthesis in L6-S1 DRG of ovariectomized rats was examined. SP-immunoreactive neurons expressed ER-α and ER-β. SP synthesis (expressed as β-PPT mRNA label) was prominent in small DRG neurons. SP concentration increased in the L6-S1 DRG and spinal cord segments, with a peak at Day 20 of gestation, but decreased in the cervix during the first two trimesters, with a rise over the last trimester to Day 10 levels. SP and ER-α mRNA synthesis increased in DRG over pregnancy but ER-β mRNA levels were largely unchanged. When ovariectomized rats were treated with exogenous estrogen, SP mRNA synthesis in the DRG increased in a dose-related manner, an effect blocked by ER blocker ICI 182 780. From these results, we postulate that synthesis of SP in L6-S1 DRG and utilization in the cervix increase over pregnancy and this synthesis is under influence of the estrogen–ER system, most likely ER-α. We postulate that SP may play a role in cervical ripening and, consequently in the birth process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.