Abstract

For low-pressure turbine, the unsteady disturbances are dominated by relative motions between rotors and stators and the unsteady flow is closely associated with aerodynamic efficiency of low-pressure turbine and engine performance. One of its most important manifestations is the boundary layer separation on the turbine blades by the passing wakes produced by upstream rows of blades. Hence, accurate prediction of the flow physics at low Reynolds number conditions is required to effectively implement flow control techniques which can help mitigate separation induced losses. The present paper concentrates on simulations for boundary layer separation of low-pressure turbine cascade under periodic wakes. In this paper, a multiblock computational fluid dynamics (CFD) code of compressible N-S equations is developed for predicting the phenomenon of boundary layer separation, transition and reattachment using large eddy simulation (LES) in the field of turbomachinery. The large-scale structures can be directly obtained from the solution of the filtered Naiver-Strokes equations and the small-scale structures are modeled by dynamic subgrid-scale model of turbulence. Firstly, unsteady boundary layer separation on a flat plate with adverse pressure gradient is simulated under periodic inflow. The time-averaged field, the phase-averaged field and the instantaneous flow field are presented and analyzed. The separation bubble becomes unstable and the location of transition moves back and forth due to vortex shedding. Secondly, a stator of turbomachinery which is influenced by wakes periodically passing is simulated. The results of the numerical simulations are discussed and compared with experimental data. For the instantaneous flow field, it seems that the spanwise vortices induced by upstream wakes are the primary reason of the initial roll-up of the shear layer and the Kelvin-Helmholtz instability plays an important role in the transition to turbulence which is observed in the separated flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call