Abstract

Aggressive inter-turbine duct, which has ultra-high bypass ratio and ultra-short axial length, is widely applied in the modern turbofan engine because it can reduce engine weight and improve low-pressure rotor dynamic characteristics. However, the aggressive inter-turbine duct that has swirling flow, wake, shock, and tip clearance leakage flow of upstream high-pressure turbine, and even has structs in its flow channel, is liable to separate, especially in high-altitude low Reynolds number (Re) condition. In addition, its downstream low-pressure turbine is on the edge of separation too. In this paper, an integrated aggressive inter-turbine duct embedded with wide-chord low-pressure turbine nozzle is adopted to eliminate the aggressive inter-turbine duct's end-wall separation. Since there are many studies on suppressing the blade suction surface's separation by upstream wake, in this study inherent wake is utilized to suppress the boundary layer separation on low-pressure turbine nozzle's suction surface in the integrated aggressive inter-turbine duct. The paper studies the unsteady flow mechanisms of the integrated aggressive inter-turbine duct (especially the separation and transition mechanisms of low-pressure turbine nozzle's suction surface boundary layer) by the computatioinal simulation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call