Abstract

A study is conducted to examine the motion, dynamic and electric consumption characteristics of an electric assisted bicycle based on the effects of certain operating conditions and structural parameters. Simulation models for operation of the electric assisted bicycle, including dynamic models of the electric assisted bicycle and battery models, are established. These simulation models are solved by MATLAB-Simulink to provide the operating characteristics of the electric assisted bicycle. Based on the established mathematical models, the motion, dynamic and electric consumption of the electric assisted bicycle are analyzed and optimized under the effects of slope, bicycle mass, wheel radius, crank length, and sprocket transmission ratio. The simulation results show that the dynamic performance and electric consumption of the electric assisted bicycle are significantly improved by reducing the bicycle mass, wheel radius, and increasing the sprocket transmission ratio. The dynamic performance and electric consumption are optimal when the slope grade, bicycle mass, wheel radius, crank length, and sprocket transmission ratio are 0%, 12 kg, 0.32 m, 0.17 m and 3.43, respectively. A study for using the regenerative energy generated during the downhill movement of the electric assisted bicycle to create electrical power is presented under the effects of rider mass and slope angle. An experimental study is also conducted to examine the motion and electric consumption characteristics of the electric assisted bicycle under real operating conditions. This study shows agreement between simulation and experimental results at the same initial conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call