Abstract

Rats with quisqualic acid lesions of the nucleus basalis magnocellularis (nBM) and control rats were compared in discrimination reversal learning set (DRLS) and olfactory discrimination learning set (ODLS) tasks, a delayed matching-to-sample task (DMTS), and open-field activity. Evidence of learning set formation was seen in control rats but not in nBM-lesioned rats in both the DRLS and ODLS tasks. Better-than-chance performances were seen for both groups in DMTS, indicating no impairment after nBM lesions. There were no group differences in open-field activity. These findings suggest that the nBM is important for higher cognitive processing such as "learning to learn" and thus is important for a complex form of reference memory. In addition, perseverational, working memory, and attentional deficits could not explain learning set impairment after nBM lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call