Abstract
Slight and hidden hearing loss in children have been linked to cognitive and social difficulties, and yet the neurobiological mechanisms behind these issues remain poorly understood. Most animal models focus on severe hearing loss, leaving the effects of hidden or slight hearing loss largely unexplored. To uncover the neural mechanisms connecting slight/hidden hearing loss to cognitive and social challenges, we induced hearing loss in young (4-week-old) Wistar rats through noise exposure. We then examined cognitive function (object recognition test) and social behavior (juvenile play behavior and social interaction). Changes in brain anatomy were assessed using cortical thickness and hippocampal size measurements, while (immuno)histochemical staining investigated neuronal circuitry maturation (myelin basic protein, parvalbumin, and perineuronal nets) and neurogenesis (doublecortin). Noise-exposed rats displayed slight high-frequency hearing loss (around 20 dB) and hidden hearing loss at other tested frequencies. This slight/hidden hearing loss was associated with impaired object recognition but did not alter social behavior. Slight/hidden hearing loss was associated with reduced myelin basic protein expression in the corpus callosum but no other alterations in cortical thickness, hippocampal size, or other markers of maturation and neurogenesis were found. These findings show that even slight/hidden hearing loss can lead to subtle brain alterations tied to cognitive deficits. This study emphasizes the need for further research to fully understand the brain changes associated with slight/hidden hearing loss and to pinpoint the mechanisms connecting these changes to behavioral deficits. This information is crucial to develop interventions to prevent the cognitive and social consequences of hearing loss. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have