Abstract

Dynamic changes of rice starch granules selected for different amylose contents were analyzed in excess water while heated in-situ in a small-angle X-ray scattering (SAXS) instrument. Normal rice starch (NS) and rice starch with high amylopectin (HAP) and high amylose (HAM) were used as models. A 1D linear correlation function and a combination power-law and Gaussian function were used to extract the starch lamellar structure parameters and the fractal dimension, ordering and distribution of starch lamellae from SAXS data. For the resulting starch paste/gels, a model of two-correlation length was fitted to afford the correlation length (ξ) for the paste/gel system. The results showed that HAM exhibited higher long period (LP) and thickness of the crystalline layers (dc) values than HAP and NS. However, HAP showed the highest ordering lamellar structure. HAP granules were more thermostable than the amylose containing starches. For the gelatinized starches, HAM showed the highest correlation length values but these notably decreased with increasing temperature indicating strong chain segment interaction. This research reveals essential structural changes in lamellae of rice starch granules and rice starch gel structure, which provides potentially useful in the working of starch-based foods and materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.