Abstract

Stability and cell permeability are critical parameters in the development of peptide therapeutics. Conjugation to fatty acids and cell-penetrating peptides, such as TAT (YGRKKRRQRRR), are established strategies to increase peptide stability and permeation, respectively. Here, we prepared lipidated analogues of a potent TAT-containing dimeric peptide-based inhibitor of the intracellular scaffolding protein PSD-95, an emerging drug target in ischaemic stroke. Lipidation increased peptide stability in vitro and in vivo. Combining both lipidation and conjugation to TAT improved brain/plasma ratios, but caused acute toxic effects due to the potent haemolytic activity of the TAT-lipid moiety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.