Abstract

Cell penetrating peptides (CPPs), known as protein translocation domains, have emerged as efficient molecular transporters to overcome biological barriers and deliver cell-impermeable cargoes into cells. The conjugation of CPPs to polymeric nanoplatforms enhances the drug delivery efficiency thus increasing their therapeutic efficacy. However, conventional CPPs are generally lack of cell specificity and could be easily degraded in vivo. These limitations lead to the development of new CPPs with superior properties. To address the issue of cell specificity, activatable CPPs have been designed to be activated at desired site through different stimuli. On the other hand, macrocyclization has been used to constrain linear CPPs into their cyclic forms. This chemical optimization of peptides endows CPPs with enhanced stability and cell permeability. This brief review will cover recent advances in terms of different types of CPPs for enhanced cell penetration. In addition, the modification chemistry used to functionalize polymeric nanoplatforms with CPPs and their recent applications for drug delivery will also be discussed. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.