Abstract

The goal of this study was to characterize how isotonic contractions affect the rate of fatigue development. Muscle bundles dissected from frog sartorius muscles were stimulated with 100-ms long train of pulses (0.5 ms, 6 V, 140 Hz). To measure the effect of the isotonic contractions, isometric tetanus were elicited at regular time intervals during the stimulation to fatigue. In general, isotonic contractions caused a faster decrease in tetanic force than isometric contractions. The difference in tetanic force between an isotonic and isometric fatigue increased gradually over a 20-min period to 7.9 and 13.5% at 0.04 and 0.1 trains/s (TPS), respectively. At 0.2, 0.5, and 1.0 TPS, the decrease in tetanic force was also faster during an isotonic fatigue, which resulted in an initial difference in tetanic force between the two types of fatigue. The difference did not exceed 18.5% and did not persist throughout the stimulation period; i.e., the difference disappeared before the end of the fatigue stimulation. The half-relaxation time was prolonged during fatigue development, and the prolongation was greater during an isotonic fatigue, except at 0.04 TPS. The increases in the half-relaxation time at 0.2, 0.5, and 1.0 TPS were followed by a decrease, and the decreases were especially pronounced during an isotonic fatigue at 0.5 and 1.0 TPS. The results showed for the first time that isotonic contractions cause a faster rate of fatigue development in frog sartorius muscles, and this effect depends on the frequency of stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call