Abstract

In the future D-T fusion reactor, tritium will be bred mainly by the reaction of 6Li (n, α) T, as well as 7Li (n, n’ α) T in tritium breeding materials. Solid breeding materials will experience harsh conditions under both irradiations by energetic particles (neutron, tritium, helium and self-particles) and high temperature. The interactions of irradiations and high temperature on lithium ceramics will influence tritium breeding ratio (TBR). The changes of chemical states and its effects on release behavior of hydrogen isotopes in deuterium-irradiated Li2TiO3 and deuterium-exposed Li2TiO3 at high temperature have been investigated. The peak of O-1s shifted to higher binding energy by both irradiation and deuterium exposure, indicating that O-D bonds formed. The amount of O-D bonds enhanced as increase of irradiation fluence and exposure temperature. The main deuterium atoms were trapped by defects for irradiated samples. Annihilation of E-centers was thought to trigger the release of hydrogen isotopes. O-D bonds were the main deuterium trapping sites in deuterium-exposed Li2TiO3. Deuterium recovered by detrapping O-D bonds would require higher temperature. Both deuterium-irradiation and deuterium-exposure at high temperature could result in the change of chemical states in Li2TiO3. The changes in chemical states had effects on deuterium release. It illustrates that tritium breeding materials in fusion reactor will be modified by both irradiation and high temperature and could result in lower tritium recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call