Abstract

The electrochemical sensing properties of graphene-based and carbon nanotube (CNT)-based electrodes towards ascorbic acid, dopamine, uric acid, and glucose are systematically compared. Nano-sized Pd catalyst particles are uniformly dispersed on both carbon supports using a supercritical fluid deposition technique to increase the sensing performance. The CNT/Pd electrode shows higher detection current than that of the graphene/Pd electrode, which is attributed to the three-dimensional architecture interwoven by the CNTs that creates a larger number of reaction sites. With the incorporation of ionic liquid (IL), the detection sensitivity of the IL/graphene/Pd electrode significantly increases, becoming noticeably higher than that of the IL/CNT/Pd counterpart. The synergistic interactions between graphene and IL that lead to the superior sensing performance are demonstrated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.