Abstract
When using latent growth modeling (LGM), researchers often restrict the factor loadings, while the multilevel modeling (MLM) treats time as a metric variable. However, when individually varying times of observations are concerned in the longitudinal studies, the use of specified loadings would lead to inaccurate estimation. Based on piecewise growth modeling (PGM), this simulation study showed that (i) individually varying times of observations with larger boundaries got worse estimates and model fits when LGM was used; (ii) estimating the PGM across all the simulation situations was robust within MLM, whereas LGM got identically equal estimation with MLM only in the case of time boundaries of ±1 month or shorter; (iii) larger change of slope in piecewise modeling indicated better estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.