Abstract
This study introduces three growth modeling techniques: latent growth modeling (LGM), hierarchical linear modeling (HLM), and longitudinal profile analysis via multidimensional scaling (LPAMS). It compares the multilevel growth parameter estimates and potential predictor effects obtained using LGM, HLM, and LPAMS. The purpose of this multilevel growth analysis is to alert applied researchers to selected analytical issues that are required for consideration in decisions to apply one of these three approaches to longitudinal academic achievement studies. The results indicated that there were no significant distinctions on either mean growth parameter estimates or on the effects of potential predictors to growth factors at both the student and school levels. However, the study also produced equivocal findings on the statistical testing of variance and covariance growth parameter estimates. Other practical issues pertaining to the three growth modeling methods are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.