Abstract

Hyperbaric oxygen therapy (HBOT) is commonly used as treatment in several diseases, such as non-healing chronic wounds, late radiation injuries and carbon monoxide poisoning. Ongoing research into HBOT has shown that preconditioning for surgery is a potential new treatment application, which may reduce complication rates and hospital stay. In this review, the effect of HBOT on oxidative stress, inflammation and angiogenesis is investigated to better understand the potential mechanisms underlying preconditioning for surgery using HBOT. A systematic search was conducted to retrieve studies measuring markers of oxidative stress, inflammation, or angiogenesis in humans. Analysis of the included studies showed that HBOT-induced oxidative stress reduces the concentrations of pro-inflammatory acute phase proteins, interleukins and cytokines and increases growth factors and other pro-angiogenesis cytokines. Several articles only noted this surge after the first HBOT session or for a short duration after each session. The anti-inflammatory status following HBOT may be mediated by hyperoxia interfering with NF-κB and IκBα. Further research into the effect of HBOT on inflammation and angiogenesis is needed to determine the implications of these findings for clinical practice.

Highlights

  • hyperbaric oxygen therapy (HBOT) increases the levels of oxygen radicals, which induce oxidative stress

  • An anti-inflammatory action of HBOT was demonstrated by decreasing concentrations of several pro-inflammatory markers

  • HBOT seems to stimulate the release of angiogenesis-promoting cytokines, including growth factors

Read more

Summary

Introduction

Since the adjunctive use of hyperbaric oxygen therapy (HBOT) was first described in 1879 [1], it has been further explored and is nowadays a widely accepted treatment in several diseases, such as delayed radiation injury, diabetic foot ulcers, carbon monoxide poisoning, decompression sickness and arterial gas embolism [2]. The Undersea and Hyperbaric Medical Society (UHMS) describes HBOT as an intervention whereby patients breathe near 100% oxygen while being pressurized to at least 1.4 atmosphere absolute (ATA) in a hyperbaric chamber [1]. The UHMS has accepted 14 indications for HBOT [3], yet new applications of HBOT have been described, including preconditioning for surgery [4,5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call