Abstract

Hydrogen sulfide (H2S) is a gaseous signaling molecule that, similar to nitric oxide (NO), plays an important role as an inhibitor neurotransmitter in the digestive tract. This study aimed to investigate the effect of H2S and to identify neurogenic contraction responses dependent on the electrical field stimulation (EFS) in the isolated lower esophageal sphincters of rabbits. An isolated lower esophageal sphincter was placed in an organ bath system and mechanical responses were recorded using a force transducer. The nerve-evoked contractile responses were obtained by EFS. The contractile responses were obtained as biphasic "on" and "off" phases seen at the beginning and end of EFS, respectively. Sodium hydrogen sulfide (NaHS) reduced the EFS-mediated "off" phase and the EFS-mediated non-adrenergic non-cholinergic (NANC) "off" phase. NaHS reduced the EFS-mediated "on" phase as well. l-Cysteine ​​reduced the EFS-mediated "off" phase and the EFS-mediated NANC "off" phase. l-Propargylglycine (PAG) did not affect the EFS-mediated "off" phase or the EFS-mediated NANC "off" phase. NaHS, l-cysteine, and PAG reduced the EFS-mediated, NO-independent "off" phase. The effect of NaHS in all of the experiments returned in time. Also, NaHS caused significant relaxation of 80-mM KCl-Krebs solution induced-contractions, while l-cysteine ​​and PAG did not cause a significant relaxation. These findings suggest that H2S has an inhibitory effect on the lower esophageal sphincter muscle. While the effect of H2S on EFS-mediated responses disappeared in time, the effect of H2S sustained the KCl-Krebs solution-induced contractions. This shows that H2S may have an effect on neurotransmission at the nerve terminal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.