Abstract
For marine benthic communities, environmental heterogeneity at small spatial scales are mostly due to biologically produced habitat heterogeneity and biotic interactions, while at larger spatial scales environmental factors may prevails over biotic features. In this study, we investigated how community structure and β-diversity of hard-bottom-associated meio- and macrofauna varied in relation to small-scale (cm–m) changes in biological substrate (an algae “turf” dominated by the macroalgae Gelidium sp., the macroalgae Caulerpa racemosa and the sponge Hymeniacidon heliophile) in a rocky shore and in relation to larger-scale (10’s m) changes in environmental conditions of the same biological substrate (the macroalgae Bostrychia sp) in different habitats (rocky shore vs. mangrove roots). Results showed that both substrate identity and the surrounding environment were important in structuring the smaller-sized meiofauna, particularly the nematode assemblages, whereas the larger and more motile macrofauna was influenced only by larger-scale changes in the surrounding ecosystem. This implies that the macrofauna explores the environment in a larger spatial scale compared to the meiofauna, suggesting that effects of spatial heterogeneity on communities are dependent on organism size and mobility. Changes in taxa composition between environments and substrates highlight the importance of habitat diversity at different scales for maintaining the diversity of the associated fauna.
Highlights
In natural systems, environmental heterogeneity occurs at varying scales in space and time affecting the diversity of species
Other groups represented less than 2% of the meiofauna
While the small-sized meiofauna were affected by heterogeneity at both scales, the larger and more mobile macrofauna was unaffected by heterogeneity within habitat but responded to larger-scale differences in the structure of the studied habitats
Summary
Environmental heterogeneity occurs at varying scales in space and time affecting the diversity of species. Environmental heterogeneity at small spatial scales (cm to few meters) are mostly due to biologically produced habitat heterogeneity and biotic interactions, while at larger spatial scales (10’s m to kilometers) environmental factors may prevails over biotic features [2]. In the intertidal zone of rocky shores, sessile organisms such as macroalgae and sponges increase small-scale habitat heterogeneity, harboring a diverse associated fauna [5,6,7]. The community structure of the associated fauna is affected by several intrinsic properties of the host, such as their physical architecture, the number of microhabitats, sediment deposition, food resources, refuge from
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.