Abstract
Distance-decay relationships (DDRs) represent a very useful approach to describing the spatial distribution of biological communities. However, plankton DDR patterns and community assembly mechanisms are still poorly understood at different spatial scales in reservoir ecosystems. We collected phytoplankton, zooplankton and water samples in 24 reservoirs from subtropical and tropical China from July to August 2018. We examined DDR patterns across three distinct spatial scales, i.e., within-reservoir, within-drainage (but between reservoirs) and between drainages. We tested whether the rate of change (i.e., slope) of DDRs is consistent across different spatial scales. We assessed the relative importance of spatial and environmental variables in shaping the community distribution of plankton and quantitatively distinguished the community assembly mechanisms. We observed significant DDR curves in phytoplankton and zooplankton communities, in which slopes of the DDRs were steepest at the smallest spatial scale. Both spatial and environmental factors had significant impacts on DDR and dispersal assembly was a slightly stronger process in reservoir phytoplankton and zooplankton community assembly than niche-based process. We conclude that DDRs of reservoir phytoplankton and zooplankton vary with spatial scale. Our data shed light on how spatial and environmental variables contribute to plankton community assembly together. However, we revealed that dispersal process contributes to the biogeography of reservoir plankton slightly more strongly than environmental filtering. Collectively, this study enhances the understanding of plankton biogeography and distribution at multiple spatial scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.