Abstract

Abstract. A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model) and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2), coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model) and CMAQ (Community Multi-scale Air Quality model). The modeling system was applied for two 10-year simulations: 1990–1999 as a present-day base case and 2045–2054 as a future case. For the current decade, the daily maximum 8-h moving average (DM8H) ozone mixing ratio distributions for spring, summer and fall showed good agreement with observations. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC) A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC) due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO+NO2) and VOC (volatile organic carbon) emissions increased by approximately 6% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045–2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%). The changes were higher in the spring and winter (25%) and smaller in the summer (17%). The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard at least once a year increased by 38%. In addition, the length of the ozone season was projected to increase with more pollution episodes in the spring and fall. For selected urban areas, the system projected a higher number of pollution events per year and these events had more consecutive days when DM8H ozone exceed 75 ppbv.

Highlights

  • Eulerian chemical transport models (CTM) have been widely used to study complex air quality problems for historical pollution events

  • Our results show that future increases in biogenic VOC emissions due to warmer temperatures could be offset by reductions in emission capacity due to LULC alterations

  • Observational data were from the Historical Climate Network (HCN; Karl et al, 1990)

Read more

Summary

Introduction

Eulerian chemical transport models (CTM) have been widely used to study complex air quality problems for historical pollution events. These models have begun to be employed as forecast systems to predict air pollution episodes for short term periods (Mckeen et al, 2005; Chen et al, 2008). With increasing concern about the range of impacts due to global change, there are new CTM studies investigating regional air quality impacts from large scale changes (Murazaki and Hess, 2006; Tagaris et al, 2007; Racherla and Adams, 2008; Wu et al, 2008). The consequences of future ozone pollution on humans and the environment are described in several recent studies (Knowlton et al, 2004; Bell et al, 2007; Campbell-Lendrum et al, 2007)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.