Abstract
The heterotrophic denitrification requires the participation of electrons which are derived from direct electron donor (usually nicotinamide adenine dinucleotide (NADH)), and the electrons are transferred via electron transport system in denitrifiers and then consumed by denitrifying enzymes. Despite the reported electron transfer ability of humic substances (HS), the influences of fulvic acid (FA), an ubiquitous major component of HS, on promoting NADH generation, electron transfer, and consumption in denitrification process have never been reported. The presence of FA, compared with the control, was found not only significantly improved the total nitrogen (TN) removal efficiency (99.9% versus 74.8%) but remarkably reduced the nitrite accumulation (0.2 against 43.8mg/L) and N2O emission (0.003 against 0.240mg nitrogen/mg TN removed). The mechanisms study showed that FA increased the metabolism of carbon source via glycolysis and tricarboxylic acid (TCA) cycle pathways to produce more available NADH. FA also facilitated the electron transfer activities from NADH to denitrifying enzymes via complex I and complex III in electron transport system, which improved the reduction of nitrate and accelerated the transformations of nitrite and N2O, and lower nitrite and N2O accumulations were therefore observed. In addition, the consumption of electrons in denitrification was enhanced due to FA stimulating the synthesis and the catalytic activity of key denitrifying enzymes, especially nitrite reductase and N2O reductase. It will provide an important new insight into the potential effect of FA on microbial denitrification metabolism process and even nitrogen cycle in nature niches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.