Abstract
The effect of forced convection on the power dissipation of cylindrical and planar, constant temperature, thermal conductivity detectors (TCDs) is investigated theoretically. Such detectors can be used either for on-line continuous sensing of fluid thermal conductivity or for determining the sample concentrations in gas chromatography. A low Peclet number, asymptotic theory is constructed to correlate the TCD’s power dissipation with the Peclet number and to explain experimental observations. Subsequently, the effect of convection on the TCD’s power dissipation is calculated numerically for both time-independent and time-dependent flows. The theoretical predictions are compared with experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.