Abstract

The goal of the present study was to compare mobilization rate of calcium (Ca) from bone in pregnant and lactating goats and sheep. Blood samples were collected from goats and sheep monthly during pregnancy and at 1, 2, and 4 weeks postpartum (pp) and monthly during lactation until 6 months after parturition. Total bone mineral content (BMC) and total bone mineral density (BMD) were quantified using peripheral quantitative computed tomography at the same intervals as the blood was taken. Bone resorption was assessed by immunoassays quantitating two epitopes of the carboxyterminal telopeptide of type I collagen (ICTP, CTX). Bone formation was estimated by quantifying serum osteocalcin (OC) and bone-specific alkaline phosphatase (bAP). In addition, Ca and 1,25-dihydroxy vitamin D (1,25-VITD) concentrations were determined in serum. Mean ICTP and CTX concentrations of both animal species increased the first week after parturition. By the second week pp, the concentrations of both markers had decreased toward early gestation levels. In contrast, mean OC concentrations continually decreased until the 1st week pp. By the 2nd week pp, the mean concentrations of OC started to increase again. Mean bAP activities decreased during gestation and reached a nadir in the first week pp in goats and 4 weeks pp in sheep. Afterwards, mean bAP activities increased again in goats and sheep. 1,25-VITD concentrations peaked the first week pp and returned to early gestation values thereafter. Total BMC and BMD decreased from the 4th month of pregnancy until the 1st week pp in both species. Afterwards, BMC increased throughout the first month pp in goats and the first 3 months pp in sheep. BMD levels of sheep and goats returned to prepartum levels during lactation. The resorptive phase of bone remodeling is accelerated at parturition and in early lactation and is uncoupled from the process of bone formation. This allows the animal to achieve Ca homeostasis at the expense of bone. Increased bone remodeling during lactation may represent physiological mechanisms to help replace the maternal skeleton lost as the animal adapted to enormously increased Ca losses to the fetus and milk in late gestation and early lactation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.