Abstract

Traumatic brain injury (TBI) is accompanied by an increase in the number of proliferating cells. However, the question of the nature, conditions of production and mechanisms of action of humoral factors secreted by fetal neural cells (FNCs) on reparative processes and neurogenesis in the brain after trauma and FNCs transplantation remains open. The purpose of the study was to establish the possibility of the influence of the conditioned medium of fetal neural cell cultures on the proliferative activity of Ki-67-positive cells in the cortex and subcortical structures of the rat brain after TBI. Materials and methods. TBI was simulated by dropping a metal cylinder on the rat’s head. Rats (E17-18) were used to obtain cultures of neural stem/progenitor cells. Conditioned media from cell cultures with high adhesive properties (HA-CM) and low adhesive properties (LA-CM) were used to treat the effects of experimental TBI in rats by intramuscular injection. The effect of conditioned media on the proliferative activity of Ki-67-positive cells in the cortex and subcortical structures of the brain after TBI was determined by immunohistochemical analysis using antibodies against Ki-67 protein. Results. Immunohistochemical analysis of the brain sections showed that on the 5th day after traumatic brain injury in rats there was a probable increase in the number of Ki-67-positive cells in the cortex, hippocampus and thalamus. It was found that the injection of HA-CM or LA-CM in animals with TBI increased the number of Ki-67-positive cells in the hippocampus compared with the TBI group and their value for the TBI+LA-CM group reached 59.6 ± 6.1, and for the TBI+HA-CM group – 47.2 ± 3.1 cells (p <0.05 compared with the TBI group). In the cortex and thalamus, the number of Ki-67-positive cells in contrast decreased compared with the group of animals with TBI and for the group TBI+LA-CM was 20.2 ± 1.6 and 12.0 ± 1.7, respectively, and for the group TBI+HA-CM – 25.3 ± 2.1 and 13.3 ± 1.3, respectively. Conclusions. The administration of LA-CM or HA-CM to animals with traumatic brain injury increases the number of Ki-67-positive cells in the hippocampus, possibly associated with increased neurogenesis, and decreases in the cortex and thalamus, which may be due to a weakening of reactive gliosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call