Abstract
It is known that properties of materials sufficiently depend on their initial defect structure. One of the methods of mechanical treatment of materials is explosive working (strengthening, welding and etc.). High strain rate deformation of materials under explosive loading caused significant changes of defect structure of crystals and as a result appropriate variations of their physical and mechanical properties. Radiation effects in crystals with nonequilibrium defect structure represents great interest for scientific as well as from applied points of view. The paper describes the results of experimental investigations of strengthening processes of titanium (purity-99.5%) and copper (purity 99.98%) using axial-symmetric explosive loading. Shock loading of materials was carried out by axis-symmetric cylindrical scheme. For shock wave generation the industrial explosive substances ANFO, Ammonite and Hexogen were used. The experiments show that the intensive shift deformations caused by the explosive pressure of intensity 10-20 GPa increase the strength and flow limits approximately 2.0-2.5 times above-mentioned materials. The samples strengthened by shock waves were subjected to the neutron irradiation. Results of the interaction of structural defects induced by shock waves followed by fast neutron irradiation (exposure of irradiation 8 x 1021 m-2; E=0.5 MeV) and its influence on strength characteristics are discusses. Samples for mechanical testing as well as for investigation of thermal stability of explosive strengthening in combination with shock and neutron action, were annealed in vacuum furnace (10-6 torr). The temperature during annealing of samples was controlled by the thermo-regulator. Accuracy of temperature fluctuation during the sample annealing for mechanical testing was ± 30C. It is shown that: a) shock loading of titanium and copper significantly increases strength characteristics with a simultaneous decrease (up to total disappearance) of plasticity; b) Neutron irradiation tends to partial relaxation of strength and plastic characteristics of titanium whereas in the case of copper in contrast its further strengthening is observed without an appearance of plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.