Abstract
In this study, the influences of various engine materials such as palladium, titanium, thorium, zirconium, vanadium, alumina, aluminum bronze, copper, iron (gray cast), manganese, nickel, cobalt, and carbon steel on the effective efficiency and effective power with respect to the variation of equivalence ratio at the maximum combustion temperatures. In-cylinder gas temperatures have been determined with respect to the melting temperatures and the performance values have been calculated with respect to the variation of the gas temperatures. The results indicated that alumina provides the maximum performance values as aluminum bronze gives the minimum performance values due to the combustion temperatures. Further-more, the equivalence ratios which give the maximum performance characteristics have been parametrically described. The obtained results can be assessed by engine designers and manufacturers to choose suitable engine material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.