Abstract
Although organisms can alter dynamics of elements in ecosystems via physiological results, the effects of tree species on ecosystem nutrient dynamics are highly uncertain. A four-fold variation in the calcium concentrations of streams, soils and leaf litters were caused by the planting of Cryptomeria japonica in south-central Japan. In this study, we examined how the calcium dynamics were affected by the planting of C. japonica through strontium isotope analysis. We predicted the planting of C. japonica would result in the calcium concentration increasing because of the significant dissolution of calcium from bedrock. In a forest ecosystem, calcium is usually derived from precipitation and bedrock weathering, and their relative contributions can be estimated using a strontium isotope mixing model. Therefore, we collected stream water, litter, soil, precipitation and bedrock samples from 17 sites in catchments dominated by C. japonica plantation or evergreen broad-leaved forest; after collection, we analyzed the sample chemical compositions and strontium isotope ratios. The calcium concentrations in the stream water and the water-soluble calcium in the soil were significantly higher at sites dominated by C. japonica than at broad-leaved forest sites. Strontium isotope analysis indicated that there was more calcium from the bedrock present in stream water at sites dominated by C. japonica than in stream water at broad-leaved forest sites. Our results showed that watershed-scale dynamics of calcium and other cations can be altered by the type of vegetation in a catchment due to the effects of vegetation on the supply of calcium from bedrock.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have