Abstract

A direct-current plasma enhanced chemical vapour deposition (PECVD) system was designed and built in-house for the deposition of hydrogenated amorphous carbon(a-C:H) thin films. In this work, a-C:H thin films prepared using this system at different deposition pressures were studied. The influence of deposition pressure on the deposition rate, energy gap, bonded hydrogen content and structure of the film has been investigated. The characterization techniques were determined from optical transmission spectroscopy, Fourier transform infrared spectroscopy and Xray diffraction measurements. The results demonstrated that the deposition pressure had strong influence on the deposition rate, optical energy gap and the bonded H content in the film. Evidence of crystallinity was observed in films prepared at low deposition pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.