Abstract

Tremor in Parkinson's disease (PD) is caused by synchronized activation bursts in limb muscles. Deep Brain Stimulation (DBS) is an effective clinical therapy for inhibiting tremor and improving movement disorders in PD patients. However, the neural mechanism of how tremor symptom is suppressed by DBS at motor unit (MU) level remains unclear. This paper developed a data acquisition platform for collecting physiological data in PD patients. Both high-density surface Electromyography (HD-sEMG) and kinematics data were collected concurrently before and after DBS surgery. The MU behaviors were obtained via HD-sEMG decomposition algorithm to reveal the effect of DBS on PD tremor. A data set of one tremor dominant PD patient acquired in pre-operation and post-operation (DBS-on) phases was analyzed. Preliminary results showed significant changes in MU firing rate and MU synchronization. The analysis approach introduced in this paper provides a novel perspective for studying the neural mechanism of DBS as revealed by MU activities. Clinical Relevance- This study presented an approach to investigate the effect of DBS therapy on improving tremor disorder of PD patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call