Abstract

The effects of lowered cochlear temperature on eighth-nerve tuning were assessed by using forward masking of whole nerve action potential (AP) responses to generate AP tuning curves (APTCs) at cochlear temperatures ranging from 38.5 degrees to 30 degrees C for probe frequencies from 8 to 36 kHz. The data indicate that subnormal cochlear temperatures result in: broadened APTCs for probe frequencies above 10 kHz which are interpreted as resulting from reduced hair-cell frequency selectivity, lowered or more sensitive APTC tips where tone-burst thresholds are unchanged, and raised or less sensitive tips where thresholds to tone bursts were elevated. Increased tip sensitivity is explained in terms of enhanced eighth-nerve adaptation which occurred during hypothermia. Experiments directly addressing adaptation were performed, in which the masker-probe interval (delta t) was systematically lengthened. The normalized AP decrement versus delta t functions indicate an enhancement of both the amount and duration of adaptation during hypothermia. Functions relating the growth of response to the masker (AP decrement versus masker intensity functions) were reduced at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call