Abstract

MgMn2O4 and Co doped Mg(Mn2 − xCox)O4 (x = 0.5, 1.0 and 2.0) compounds have been successfully synthesized and studied as negative materials for lithium ion battery for the first time. Co doping induced a phase transition of MgMn2O4 from a tetragonal spinel-structure with a space group of I41/amd to a cubic spinel structure with a space group of Fd-3m. Electrochemical measurements indicate that the reversible capacity and cyclability of Mg(Mn2 − xCox)O4 first increases and then decreases with increasing Co content indicating that Co content has a significant effect on the electrochemical performance. MgMn1.5Co0.5O4 shows the best electrochemical performance compared to the other three samples. This might be largely attributed to the phase transition and anti-sites defects of spinel crystal cell resulting from the Co substitution for Mn, which was further confirmed by Rietveld refinement of neutron diffraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.