Abstract
AbstractThe United States (U.S.) West Coast power system is strongly influenced by variability and extremes in air temperatures (which drive electricity demand) and streamflows (which control hydropower availability). As hydroclimate changes across the West Coast, a combination of forces may work in tandem to make its bulk power system more vulnerable to physical reliability issues and market price shocks. In particular, a warmer climate is expected to increase summer cooling (electricity) demands and shift the average timing of peak streamflow (hydropower production) away from summer to the spring and winter, depriving power systems of hydropower when it is needed the most. Here, we investigate how climate change could alter interregional electricity market dynamics on the West Coast, including the potential for hydroclimatic changes in one region (e.g., Pacific Northwest (PNW)) to “spill over” and cause price and reliability risks in another (e.g., California). We find that the most salient hydroclimatic risks for the PNW power system are changes in streamflow, while risks for the California system are driven primarily by changes in summer air temperatures, especially extreme heat events that increase peak system demand. Altered timing and amounts of hydropower production in the PNW do alter summer power deliveries into California but show relatively modest potential to impact prices and reliability there. Instead, our results suggest future extreme heat in California could exert a stronger influence on prices and reliability in the PNW, especially if California continues to rely on its northern neighbor for imported power to meet higher summer demands.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have