Abstract
The solubility of carbon and nitrogen in the CaF2-CaO-SiO2-Al2O3 slag system was studied. The effects of the CaF2, extended basicity (CaO/(SiO2 + Al2O3)), and atmospheric conditions on the dissolution behavior of the carbon and nitrogen, as well as the correlations of the behaviors with the slag structure observed at 1773 K (1500 °C), are presented. Increases in the extended basicity and the CaF2 increased the solubility of carbon in the slag. In the case of nitrogen dissolution, a characteristic parabolic curve with an identifiable minimum was observed for the slag. This curve shape correlated with a change in the dominant mechanism of dissolution from an incorporated to a free nitride. The solubility of carbon in the mixture of CO with N2 was significantly higher than that of carbon in the mixture of CO with Ar and is likely due to the formation of cyanide. Thus, when carbon is present in significant quantities in the slag, the solubility of nitrogen in the slag increases. The degree of depolymerization of the slag with increased content of CaO/(SiO2 + Al2O3) and CaF2 was verified using Fourier transform infrared and Raman spectroscopy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have