Abstract

The behavior of boron in Cu(4.8at.%B)/Ti/SiO2 was investigated as a function of temperature, and its influences on the Cu-Ti interaction, resistivity, and diffusion barrier properties were also studied. The results showed the formation of a titanium boride layer at the Cu-Ti interface, after heating the Cu(B)/Ti/SiO2 at 400°C and higher, effectively served as a barrier for the Cu and Ti diffusion, and significantly enhanced the Cu (111) texture. The resistivity dropped from 16.3 to 2.33 μΩ-cm after heating at 600°C, and continued to decrease up to 800°C. As a result, the Cu, in the form of B(O)x/Cu/TiB2/Ti(O)x/SiO2 multilayers, obtained by heating the Cu(B)/Ti/SiO2, showed high thermal stability with low resistivity and, thus, can be used as interconnections in advanced integrated circuits. Since the Cu, in the form of B(O)x/Cu/TiB2/Ti(O)x/SiO2 multilayers, obtained by heating the Cu(B)/Ti/SiO2, showed high thermal stability with low resistivity, it can be used as interconnections in advanced integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.