Abstract
The robustness of the cathodic protection systems utilized for offshore wind monopile foundations depends on the surface condition of the steel as well as the environmental conditions. This study investigated how preexisting biofouling and corrosion products on vertical uncoated steel surfaces extending from the intertidal zone to the buried zone affected the cathodic protection requirements when impressed current cathodic protection (ICCP) was applied under tidal conditions. The comparative results between initially clean and previously fouled and corroded panel sets showed that the fouling and corrosion products increased both the initial and mean current densities. They also altered the composition, slowed the formation, and reduced the protective properties of cathodic chalks during nine weeks of deployment in seawater at Port Canaveral, Florida.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.