Abstract
Aim: Stress is the major problem in the modern world. Stress is one of the basic factors in the development of many diseases and has been exposed to be associated with altered homeostasis that may lead to antioxidant imbalance. Our aim was to evaluate the anti-stress activities of aqueous leaf extract of Aegle marmelos (AM) in immobilization-induced stress in rats. The anti-stress activities of AM were assessed by monitoring the change in the status of stress hormone, glucose, and non-enzymic antioxidants in immobilization-induced stress in rats. Materials and Methods: Immobilization stress was induced in rats by placing in 20 cm × 7 cm plastic tubes for 2 h/day for 21 days. Aqueous leaf extract of AM was given by gavage to the experimental rats at a dose of 100 mg/kg body weight daily for 21 days. Results: Immobilization stress induced in rats for 21 days caused increased corticosterone, glucose levels and decreased levels of non-enzymic antioxidant such as Vitamin C, vitamin E, and glutathione in plasma, liver, and kidney. AM significantly increased the non-enzymic antioxidants and decreased the levels of corticosterone at the end of experimental period as compared to control. Conclusion: Natural antioxidants strengthen the endogenous antioxidant defenses from reactive oxygen species and restore an optimal balance by neutralizing the reactive species. They are gaining immense importance by virtue of their critical role in disease prevention. In this context, AM can rightly be mentioned as a plant of considerable interest. In the present study, treatment with AM was found to reverse the oxidative stress in the hypothalamus caused by immobilization stress. So, it is concluded that AM is having high antioxidant properties and anti-stress activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Nutrition, Pharmacology, Neurological Diseases
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.