Abstract

We report on the growth of ultra-thin bismuth (Bi) films on the basal plane of highly ordered pyrolitic graphite (HOPG) substrates; we investigate the morphologies of films grown at room temperature and then annealed at high temperature, and the morphologies of Bi structures grown at high temperature. Films grown at room temperature nucleate flat islands on the HOPG terraces, and 1D nanorods from HOPG step edges, the islands and rods both have heights in the range 1–3 nm. During annealing, the flat islands break up into groups of aligned, ∼ 2.5 nm tall rods. For films grown at high temperature, terrace nucleation is almost nonexistent, and 1D structures grow from step edges, with heights up to 30 nm. Finally, we observe rods with distinctively different morphologies corresponding to (110) and (111) orientations, and infer a surface energy driven Bi(110) to Bi(111) orientation transition. We speculate that the dominant mechanism for the reorientation is coalescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.