Abstract

The effects of the charge capture process by an isolated and uncapped nanocrystal on the electron beam induced current are studied by the use of the Monte Carlo simulation. In the calculation, the current is created by an electron beam irradiation and is collected by a hemispherical nano-contact. The nanocrystal is considered as a recombination center, and the surface recombination velocity at the free surface is assumed to be equal to zero. The diffusion length is taken out from the fitting of simulated collection efficiency profiles, and studied as a function of the electron beam energy. The diffusion length rapidly decreases at very low energy (≤∼5 keV), increases to reach a maximum at middle energies (∼13 keV), and then decreases to reach saturation for high energy (≥∼25 keV). The effect of the isolated nanocrystal at the surface is highlighted at high energy, when the diffusion length becomes energy independent. This situation leads to determination of effective surface recombination velocities the values of which underline the trapping process in the nanocrystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.