Abstract

X-ray photoelectron spectroscopy (XPS), low energy electron diffraction, and cyclic voltammetry have been used to study the adsorption of iodine on the Ru(0001), air, and water exposure to both clean and iodine covered Ru(0001) surfaces and the stability of the iodine adlayer during Cu overpotential electrodeposition. A structure was observed after vapor exposure of the Ru(0001) surface at room temperature. The structure was found to be stable toward ambient air and water exposure. The I ad-layer passivates the Ru(0001) surface against significant hydroxide, chemisorbed oxygen, or oxide formation during exposure to air. Immersion of I-Ru(0001) results in greater hydroxide and chemisorbed oxygen formation than air exposure. A saturation coverage of I on a Ru(poly) electrode similarly passivated the Ru surface against oxidation upon exposure to water vapor over an electrochemical cell in an ultrahigh vacuum electrochemistry transfer system. Studies with combined electrochemical and XPS techniques show that iodine surface adlayer remained on top of the surface after cycles of overpotential electrodeposition/dissolution of copper on Ru(0001). These results indicate the potential bifunctionality of the iodine layer to both passivate the Ru surface in the microelectronic processing and to act as a surfactant for copper electrodeposition. © 2004 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.