Abstract
To fabricate practical devices based on semiconducting two-dimensional (2D) materials, the source, channel, and drain materials are exposed to ambient air. However, the response of layered 2D materials to air has not been fully elucidated at the molecular level. In the present report, the effects of air exposure on transition metal dichalcogenides (TMD) and metal dichalcogenides (MD) are studied using ultrahigh-vacuum scanning tunneling microscopy (STM). The effects of a 1-day ambient air exposure on MBE-grown WSe2, chemical vapor deposition (CVD)-grown MoS2, and MBE SnSe2 are compared. Both MBE-grown WSe2 and CVD-grown MoS2 display a selective air exposure response at the step edges, consistent with oxidation on WSe2 and adsorption of hydrocarbon on MoS2, while the terraces and domain/grain boundaries of both TMDs are nearly inert to ambient air. Conversely, MBE-grown SnSe2, an MD, is not stable in ambient air. After exposure in ambient air for 1 day, the entire surface of SnSe2 is decomposed to SnOx and SeOx, as seen with X-ray photoelectron spectroscopy. Since the oxidation enthalpy of all three materials is similar, the data is consistent with greater oxidation of SnSe2 being driven by the weak bonding of SnSe2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.