Abstract
Sound attenuation of air due to climatic conditions is often assumed to be constant and/or negligible in the electro acoustic design of voice alarm (VA) systems. However, air attenuation variations can be significant in large underground spaces and particularly as the frequency increases to the mid to high frequencies which are the most relevant to speech intelligibility. This investigation evaluates and quantifies the impact of the variability of the most influential climatic parameters, air temperature and relative humidity, on the performance of VA systems in underground stations. Computer simulations were employed to predict the effect of varying these climatic parameters on key performance metrics. Results demonstrated a significant increase in the values of reverberation time parameters with both temperature and humidity, at frequencies critical for speech intelligibility. Consequently the values of speech intelligibility related metrics decreased with rising temperatures and humidity. Hence, the study shows how ignoring temperature and humidity effects can lead to calculation errors in the design of VA systems. These errors could cause over-specification of the absorption required of surface materials, and the inaccurate prediction of acoustic and speech intelligibility related parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.