Abstract

Volatile threshold-switching (TS) devices have been used as selectors and to simulate neurons in neural networks. It is necessary to find new ways to improve their performance. The randomness of conductive filament (CF) growth and the endurance of the devices are urgent issues at present. Here, we explored embedded Ag nanoislands (NIs) in HfO2-based TS devices to limit the position of the CF and facilitate its growth at the same time. The Au/Ag(2 nm)/HfO2(4 nm)/Ag NIs/Au volatile TS devices exhibited forming-free characteristics with improved endurance compared with the devices without Ag NIs, which was ascribed to the enhanced localization of the electrical field and increased oxygen vacancies in HfO2 induced by the Ag NIs. A mechanism was proposed to explain the volatile TS behaviors of the devices. The Ag NIs and the thickness of the HfO2 layers played key roles in whether the devices required forming. This work shows that the use of metal NIs is an effective and convenient way to improve the performance of TS devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call