Abstract

Exposure to intense noise environments is a major cause of sensorineural hearing loss and auditory perception disorders, such as tinnitus and hyperacusis, which may have a central origin. The effects of noise-induced hearing loss on the auditory cortex have been documented in many studies. One limitation of these studies, however, is that the effects of noise trauma have been mostly studied at the granular layer (i.e, the main cortical recipient of thalamic input), while the cortex is a very complex structure, with six different layers each having its own pattern of connectivity and role in sensory processing. The present study aims to investigate the effects of acute and chronic noise trauma on the laminar pattern of stimulus-evoked activity in the primary auditory cortex of the anesthetized guinea pig. We show that acute and chronic noise trauma are both followed by an increase in stimulus-evoked cortical responses, mostly in the granular and supragranular layers. The cortical responses are more monotonic as a function of the intensity level after noise trauma. There was minimal change, if any, in local field potential (LFP) amplitude after acute noise trauma, while LFP amplitude was enhanced after chronic noise trauma. Finally, LFP and the current source density analysis suggest that acute but more specifically chronic noise trauma is associated with the emergence of a new sink in the supragranular layer. This result suggests that supragranular layers become a major input recipient. We discuss the possible mechanisms and functional implications of these changes.NEW & NOTEWORTHY Our study shows that cortical activity is enhanced after trauma and that the sequence of cortical column activation during stimulus-evoked response is altered, i.e. the supragranular layer becomes a major input recipient. We speculate that these large cortical changes may play a key role in the auditory hypersensitivity (hyperacusis) that can be triggered after noise trauma in human subjects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call