Abstract

Vitamin E was proposed as treatment for Alzheimer’s disease many years ago. However, the effectiveness of the drug is not clear. Vitamin E is an antioxidant and neuroprotector and it has anti-inflammatory and hypocholesterolemic properties, driving to its importance for brain health. Moreover, the levels of vitamin E in Alzheimer’s disease patients are lower than in non-demented controls. Thus, vitamin E could be a good candidate to have beneficial effects against Alzheimer’s. However, evidence is consistent with a limited effectiveness of vitamin E in slowing progression of dementia; the information is mixed and inconclusive. The question is why does vitamin E fail to treat Alzheimer’s disease? In this paper we review the studies with and without positive results in Alzheimer’s disease and we discuss the reasons why vitamin E as treatment sometimes has positive results on cognition but at others, it does not.

Highlights

  • Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a long evolution whose clinical symptoms appear late in life

  • In favor of this theory, we can say that the severity of this type of dementia correlates well with the growing accumulation of neurofibrillary tangles in the brain [11,12,13]; there is a high correlation between hyper-phosphorylated tau species in the cerebrospinal fluid (CSF) in patients with AD and the degree of cognitive impairment [14]; a decrease in tau filaments by drugs directed against this therapeutic target alleviates cognitive deterioration [15]

  • Lower levels of α-tocopherol but γ-tocopherol higher in serum of AD patients. They are less numerous, we can find other studies reported no difference in vitamin E levels (Table 2)

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a long evolution whose clinical symptoms appear late in life. We can divide the hypotheses into three groups: The hypotheses based on protein deposits This group includes the beta-amyloid (Aβ) cascade hypothesis; and the tau hypothesis. Neurons with a high content of hyper-phosphorylated tau enter into apoptosis and neurodegeneration takes place [10]. In favor of this theory, we can say that the severity of this type of dementia correlates well with the growing accumulation of neurofibrillary tangles in the brain [11,12,13]; there is a high correlation between hyper-phosphorylated tau species in the cerebrospinal fluid (CSF) in patients with AD and the degree of cognitive impairment [14]; a decrease in tau filaments by drugs directed against this therapeutic target alleviates cognitive deterioration [15]. It has been seen that the elevation of both cells and proinflammatory cytokines appears before the deposit of Aβ [20]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.