Abstract

This paper studies the effective thermal conductivity of multiphase composite in which a thermal boundary resistance exists at constituent interfaces. Based on the theoretical framework of conductivity for binary system composites in the presence of a thermal contact resistance between matrix and inclusion given by Y. Benveniste and T. Miloh (1986), the fundamental concept is generalized for the case of multiphase composites with imperfect contact which permits a temperature discontinuity between matrix and inclusions of different phases. A micromechanics model, the “generalized self-consistent scheme (GSCS)” based on a particle-matrix embedding in the effective medium, is generalized to evaluate the effective conductivity of multiphase medium with imperfect thermal contact at constituent interfaces. Numerical results are given for three-phase particulate composites with spherical particles to illustrate the effect of imperfect interfaces on the effective thermal conductivity of multiphase composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.