Abstract

The paper deals with the effect ofγ-radiation from a Co60 source on the electronic properties of amorphous silicon field effect transistors. These thin film devices, deposited by the glow discharge technique, are being developed for addressable liquid crystal displays, logic circuits and other applications. 1 Mrad (Si) and 5 Mrad (Si) doses were used and the transistors were held at gate voltages between −8V and +8V during irradiation. Measurements on irradiated specimens showed shifts in threshold voltage of less than 3 V and a change in transconductance below 10%, both of which could be removed by annealing above 130 °C. These results are compared with presently available “radiation hardened” crystalline silicon device structures and it is concluded that in spite of the thicker gate insulation layer (0.3 μm of silicon nitride) of the amorphous devices, the latter are remarkably radiation tolerant, with little degradation in performance. Measurements on irradiatedα-Si films deposited on glass show pronounced conductivity changes, not observed in the transistors. It is suggested that these effects arise at the Si/glass interface, and are prevented by the presence of the silicon nitride film in the devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.